

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road — 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : PQ (18EE0227) Course & Branch: B.Tech - EEE

Year & Sem: IV-B.Tech & I-Sem **Regulation:** R18

<u>UNIT –I</u> Introduction

1.	What is power quality? Why we are concern about power quality?	[CO1] [L1]	10M
2.	Explain about the power quality evaluation procedure.	[CO1] [L1]	10 M
3.	Classify the different types of power quality issues.	[CO] [L2]	10 M
4.	a) What are the types of wave form distortion?	[CO1] [L1]	5M
	b) Write a short note on voltage imbalance	[CO1] [L2]	5M
5.	What are the power quality standards?	[CO2] [L1]	10 M
6.	What are the responsibilities of end users and suppliers of electric	power supply?	
		[CO1] [L1]	10 M
7.	Draw and explain the CBEMA curve	[CO1] [L1]	10 M
8.	Draw and explain ITI curve	[CO1] [L2]	10 M
9.	Explain the power quality terminology	[CO2] [L1]	10 M
10.	a) Define notching	[CO1] [L2]	2M
	b) What is ment by dc offset	[CO1] [L1]	2M
	c) Define coupling	[CO1] [L2]	2 M
	d) What is ment by surge	[CO1] [L1]	2M
	e) Define flicker	[CO1] [L2]	2M

<u>UNIT –II</u> **Power Quality disturbances**

1.	Draw and explain the impulsive and oscillatory transients	[CO2] [L1]	10M
2.	Mention the categories and characteristics of electromagnetic phenomena in	power systems'	?
		[CO2] [L3]	10M
3.	What are the sources of transient over voltages? Explain clearly.	[CO2] [L2]	10M
4.	a) Explain the long duration voltage variations.	[CO2] [L2]	5M
	b) Explain the short duration voltage variation.	[CO2] [L1]	5M
5.	What are the principles of over voltage protection? Explain with diagram.	[CO2] [L1]	10M
6.	Classify the principles of regulating the voltage	[CO2] [L2]	10M
7.	Explain in detail the role of capacitors for the voltage regulation.	[CO2] [L1]	10M
8.	Explain the effect of line drop compensation on the voltage profile.	[CO2] [L1]	10M
9.	What are the conventional devices available for the voltage regulation?	[CO2] [L1]	10M
10.	a) Define oscillatory transient?	[CO2] [L1]	2M
	b) What is the main cause for impulsive transient?	[CO2] [L1]	2M
	c) Define Sag?	[CO2] [L1]	2M
	d) What is the frequency range and duration in medium frequency transient?	[CO2] [L2]	2M
	e) When an interruption occurs.	[CO2] [L2]	2M

<u>UNIT –III</u> **Fundamentals of harmonics and applied harmonics**

1.	What is harmonic distortion? Discuss about the voltage versus current di	stortion.	
		[CO2] [L2]	10 M
2.	a) Write the impact of voltage distortion and current distortion.	[CO1] [L3]	5M
	b) Explain the commonly used indices for measuring of harmonic content	it in the	
	waveform.	[CO1] [L1]	5M
3.	Explain the power system quantities under non sinusoidal condition.	[CO1] [L1]	10M
4.	What are the harmonics sources from commercial loads?	[CO2] [L2]	10M
5.	What are the harmonics sources from industrial loads?	[CO2] [L2]	10M
6.	Explain the brief description about the harmonic distortion evaluation.	[CO2] [L1]	10M
7.	Explain the principles of controlling harmonics.	[CO2] [L1]	10M
8.	Explain the various devices for the controlling of harmonics distortion.	[CO2] [L1]	10M
9.	What are effects of harmonics? Explain harmonic distortion evaluation p	rocedure?	
		[CO2] [L2]	10M
10.	a) What is ment by harmonics?	[CO2] [L2]	2 M
	b) What is percentage of fluorescent lighting in commercial loads?	[CO2] [L2]	2 M
	c) Define THD	[CO2] [L2]	2 M
	d) What is the purpose of line reactor?	[CO2] [L2]	2 M
	e) What is ment by TDD?	[CO2] [L2]	2M

<u>UNIT -IV</u> <u>Power quality monitoring</u>

1.	a) Write a short note on power quality monitoring standards.	[CO3] [L2]	5M
	b) Write about any one power quality measurement equipment.	[CO3] [L2]	5M
2.	Explain the various power quality monitoring considerations.	[CO3] [L1]	10M
3.	Explain about various power quality measuring equipment.	[CO3] [L1]	10M
4.	Explain the categories of instruments to consider for harmonic analysis.	[CO3] [L1]	10M
5.	Explain about smart power quality monitors.	[CO3] [L1]	10M
6.	Explain about the flicker meters.	[CO3] [L2]	10M
7.	Explain the applications for system maintenance, operation and reliability.	[CO3] [L1]	10M
8.	Explain about the permanent power quality monitoring equipment.	[CO3] [L1]	10M
9.	Explain about the power quality bench marking.	[CO3] [L1]	10M
10.	a) What is ment by true RMS?	[CO3] [L3]	2M
	b) Define multimeter	[CO3] [L2]	2M
	c) Why the flicker meter is need?	[CO3] [L2]	2M
	d) What is revenue meters?	[CO3] [L3]	2M
	e) What is purpose of digital fault recorders?	[CO3] [L2]	2M

<u>UNIT -V</u>

Power quality enhancement using custom power devices

1.	What is the need for current limiter? Discuss the operation of a Solid state	current	limiter	•
		[CO4]		10M
2.	What are the advantages of solid state current limiters compared to conver	ntional c	current	
	limiters? Discuss.	[CO4]		10 M
3.	What are the advantages of static var compensators? Discuss the operation	ı of Stat	ic Serie	
	Compensators?	[CO4]	[L2]	10M
4.	Draw and explain the schematic diagram of a right shunt UPQC?	[CO4]	[L3]	10M
5.	How UPQC protects the load from harmonic voltages? Discuss.	[CO4]	[L2]	10M
6.	Explain the solid transfer switch transfer with the transfer operation?	[CO4]	[L1]	10M
7.	Explain the Solid State Breaker principle of operation?	[CO4]	[L1]	10M
8	Draw and explain the schematic diagram Dynamic Voltage Restorer?	[CO4]	[L3]	10M
9.	Explain the principle of DVR operation used for sag mitigation?	[CO4]	[L1]	10M
10.	a)Give the list of two groups custom power devices?	[CO4]	[L1]	2M
	b)Give the complete classification of custom power devices?	[CO4]	[L1]	2M
	c)What is Static Current Limiter?	[CO4]	[L2]	2M
	d)What is Static Transfer Switch?	[CO4]	[L2]	2M
	e)What is Solid State Breaker?	[CO4]	[L2]	2M

Prepared by: **S.MUNISEKHAR**

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : PQ (18EE0227) Course & Branch: B.Tech - EEE

Year & Sem: IV-B.Tech & I-Sem **Regulation:** R18

<u>UNIT – I</u>

Introduction

1. A Manufacturer of load equipment may define power	er quality has those characteristics of	the	
that enables the equipment to work properly.		[]
A) Power supply	B) Load		
C) Miss operation	D) Frequency		
2. Any power problem manifested in voltage, current customer equipment.	, or frequency deviations that result i	in	of]
A) Failure or misoperation	B) voltage sag		
C) Voltage swells	D) frequency		
3. The current resulting from a short circuit causes the	Completely.	[]
A) Voltage to sag	B) voltage improvement		
C) Capacitive load	D) inductive load		
4. Distorted currents fromloads also	distort the voltage as they pass thro	ugh the	;
system impedance.		[]
A) Capacitive	B) inductive		
C) Harmonic producing	D) voltage sag		
5. Sag is used as a synonym to the IEC term		[]
A) short circuit	B) dip		
C) Swell	D) voltage		
6. The term swell is introduced as an inverse to		[]
A) short circuit	B) Harmonics		
C) ANSI	D) dip		
7. A utility engineer may think of a surge as the transic	ent resulting from a lightning stroke	for whi	ch a -
is used for protection.		[]
A) surge arrester	B) Lightning phenomenon	_	
PRINCIPLES OF POWER QUALITY]	Page 6

Q An		D) isolat	or		
6. All	is a sudden non – p	power frequency chan	ge in the steady state	condition	of
voltage, current or both the	at is unidirectional	in polarity .		[]
A) Short circuit		B) surge	e		
C) Impulse transier	nt	D)open	circuit		
9. A transient with a prima	ry frequency compo	onent less than 5 kHz,	and a duration from	0.3 to 50n	ns, is
considered a				[]
A) High frequency	transient	B) low f	frequency transient		
C) Medium frequer	ncy transient	D) pulse	e width		
10. Oscillatory transients w	vith principal freque	encies less than	can also be found of	on the	
distribution system.				[]
A) 50Hz	B) 100Hz	C) 150Hz	D) 300Hz		
11. Long-duration variation	ns encompass root-i	mean square (rms) dev	viations at power free	quencies fo	or
longer than	_	-	-	[]
A) 1min	B) 2min	C) 3min	D) 5min		
12. Anis an incre	*	,	<i>'</i>	er frequen	cy
for a duration longer than 1			1	[]
-				_	
A) Under voltage		B) Over vo	oltage		
C) Flicker		D) None			
13. Anis a d	ecrease in the rms a	c voltage to less than	90 percent at the poy	wer freque	ncv
		ie voltage to less than	30 percent at the pov	1	1103
for a duration longer than 1		e voltage to less than	50 percent at the pov	[]
-		-		[]
A) Under voltage		B) Over vo		[]
A) Under voltage C) Flicker	1 min	B) Over vo D) None	oltage	Î]
A) Under voltage C) Flicker 14. An o	1 min	B) Over vo D) None	oltage	Î]
A) Under voltage C) Flicker	1 min	B) Over vo D) None	oltage	Î]
A) Under voltage C) Flicker 14. An of or a period of time not exceed A) Interruption	occurs when the suppleeding 1 min. B)sag	B) Over vo D) None ply voltage or load cur C)Swell	oltage rrent decreases to les D)No	s than 0.1]
A) Under voltage C) Flicker 14. An of or a period of time not exc A) Interruption 15. A is a decr	ccurs when the suppeeding 1 min. B)sag rease to between 0.1	B) Over vo D) None ply voltage or load cur C)Swell and 0.9 pu in rms vol	oltage rrent decreases to les D)No	s than 0.1]
A) Under voltage C) Flicker 14. An of or a period of time not exceed A) Interruption	ccurs when the suppeeding 1 min. B)sag rease to between 0.1	B) Over vo D) None ply voltage or load cur C)Swell and 0.9 pu in rms vol	oltage rrent decreases to les D)No	s than 0.1]
A) Under voltage C) Flicker 14. An of or a period of time not exc A) Interruption 15. A is a decrefrequency for durations from	ccurs when the suppeeding 1 min. B)sag ease to between 0.1 om 0.5 cycle to 1 mi	B) Over vo D) None ply voltage or load cur C)Swell and 0.9 pu in rms vol	oltage rrent decreases to les D)Not ltage or current at the	s than 0.1 [ne e power [pu]
A) Under voltage C) Flicker 14. An of or a period of time not exc A) Interruption 15. A is a decrefrequency for durations from A) Flicker	ccurs when the supple ceeding 1 min. B)sag rease to between 0.1 om 0.5 cycle to 1 mi	B) Over vo D) None ply voltage or load cur C)Swell and 0.9 pu in rms vol n	oltage rrent decreases to les D)Note tage or current at the	s than 0.1 [ne e power [pu]
A) Under voltage C) Flicker 14. An or for a period of time not exc A) Interruption 15. A is a decr frequency for durations fro A) Flicker 16. A is definite	ccurs when the supposeding 1 min. B)sag sease to between 0.1 om 0.5 cycle to 1 mi B) Harm ed as an increase to	B) Over vo D) None ply voltage or load cur C)Swell and 0.9 pu in rms vol n onics C) Swel between 1.1 and 1.8 p	oltage rrent decreases to les D)Note tage or current at the	s than 0.1 [ne e power [pu]
A) Under voltage C) Flicker 14. An of or a period of time not exc A) Interruption 15. A is a decrefrequency for durations from A) Flicker	ccurs when the supposeding 1 min. B)sag sease to between 0.1 om 0.5 cycle to 1 mi B) Harm ed as an increase to	B) Over vo D) None ply voltage or load cur C)Swell and 0.9 pu in rms vol n onics C) Swel between 1.1 and 1.8 p	oltage rrent decreases to les D)Note tage or current at the	s than 0.1 [ne e power [pu]
A) Under voltage C) Flicker 14. An or for a period of time not exc A) Interruption 15. A is a decr frequency for durations fro A) Flicker 16. A is definite	ccurs when the supposeding 1 min. B)sag sease to between 0.1 om 0.5 cycle to 1 mi B) Harm ed as an increase to	B) Over vo D) None ply voltage or load cur C)Swell and 0.9 pu in rms vol n onics C) Swel between 1.1 and 1.8 p	oltage rrent decreases to les D)Nor ltage or current at the	s than 0.1 [ne e power [g current at	pu]
A) Under voltage C) Flicker 14. An of or a period of time not exc A) Interruption 15. A is a decrefrequency for durations from A) Flicker 16. A is define power frequency for durations	ccurs when the supposeding 1 min. B)sag sease to between 0.1 om 0.5 cycle to 1 mi B) Harm ed as an increase to ons from 0.5 cycle B) Harm	B) Over vo D) None ply voltage or load cur C)Swell and 0.9 pu in rms vol n onics C) Swel between 1.1 and 1.8 p to 1 min. onics C) Swel	oltage rrent decreases to les D)Not ltage or current at the D) Sagou in rms voltage or current D) Sagou in rms voltage or current	s than 0.1 [ne e power [g current at	pu]] the
A) Under voltage C) Flicker 14. An	ccurs when the supposeding 1 min. B)sag sease to between 0.1 om 0.5 cycle to 1 mi B) Harm ed as an increase to ons from 0.5 cycle B) Harm ned as the maximum	B) Over vo D) None ply voltage or load cur C)Swell and 0.9 pu in rms vol n onics C) Swel between 1.1 and 1.8 p to 1 min. onics C) Swel m deviation from the a	D)Nortage D)Nortage or current at the D) Sague or current at the D) Sague of the three power age of the three pow	s than 0.1 [ne e power [g current at	pu]] the] ages
A) Under voltage C) Flicker 14. An	ccurs when the supposeding 1 min. B)sag rease to between 0.1 om 0.5 cycle to 1 mi B) Harm ed as an increase to ons from 0.5 cycle B) Harm ned as the maximum average of the three	B) Over vo D) None ply voltage or load cur C)Swell and 0.9 pu in rms vol n onics C) Swel between 1.1 and 1.8 p to 1 min. onics C) Swel m deviation from the a	D)Nortage D)Nortage or current at the D) Sague or current at the D) Sague of the three power age of the three pow	s than 0.1 [ne e power [g current at	pu]] the] ages
A) Under voltage C) Flicker 14. An	ccurs when the supposeding 1 min. B)sag sease to between 0.1 om 0.5 cycle to 1 mi B) Harm ed as an increase to ons from 0.5 cycle B) Harm ned as the maximum average of the three currents.	B) Over vo D) None ply voltage or load cur C)Swell and 0.9 pu in rms vol n onics C) Swel between 1.1 and 1.8 pto 1 min. onics C) Swel m deviation from the ac e phase voltages or cur	poltage Trent decreases to les D)Note that the service of the three presents, divided by the server and the s	s than 0.1 [ne e power [g current at [g chase volta e average of	pu] the]
A) Under voltage C) Flicker 14. An	ccurs when the supposeding 1 min. B)sag sease to between 0.1 om 0.5 cycle to 1 mi B) Harm ed as an increase to ons from 0.5 cycle B) Harm ned as the maximum average of the three currents.	B) Over vo D) None ply voltage or load cur C)Swell and 0.9 pu in rms vol n onics C) Swel between 1.1 and 1.8 pto 1 min. onics C) Swel m deviation from the ac e phase voltages or cur	oltage rrent decreases to les D)Nor ltage or current at the D) Sa ou in rms voltage or of D) Sa rents, divided by the ge unbalance	s than 0.1 [ne e power [g current at [g chase volta e average of	pu] the]

18is defines as a steady state dev	iation from an ideal sine wave of p	ower	
frequency principally characterized by the spectral con	ntent of the deviation.	[]
A) Waveform distortion C) Noise	B) Voltage unbalance D) Notchi		
19. Voltages or currents having frequency components which the supply system is designed to operate are cal			
which the supply system is designed to operate are car	neu	[]
20. Voltage sag is caused by	narmonics D)All	[]
A) System faults	B) Load variations		
C) Starting of large motors 21. Unwanted electric signal with broad band is	D) A & B	[]
A) Notching B) DC offset C) Noise 22. The presence of DC in AC system is	D) Harmonics	[1
	D) II	-	-
A) Notching B) DC offset C) Noise 23. Voltage fluctuations is sometimes called as	D) Harmonics	[]
A) sag B)Swell C)Flicker 24. The duration of voltage sag is	D)Noise	[]
A) 0.25cycle -0.5min	B) 0.5cycle-1min		
C) 1cycle-1min	D) None		
25. The duration of voltage swell is		[]
A) 0.25cycle -0.5min	B) 0.5cycle-1min		
C) 1 cycle-1 min	D) None	r	1
26. Waveform distortion is A) Frequency variation	B) Steady state deviation	L	J
•	•		
C) A&B	D) None		
27. Endures are better informed about		[]
, E	C)A&B D)None		
28. The ultimate reason that we are concerned about p	ower quality is	[]
A) Technical value C) A&B	B) Economic value D) None		
29. Voltage fluctuations is also called as		[]
	r) Frequency variation D) None		
30. CBEMA curve is replaced by A) ITI B) IIT C	C) CMT D) None	[J

QUI	ESTION BANK	202	0
31. Interruptions occur due to	[]
A) Power system faults C)Control mal function B)Equipment fa D)All			
32. Loads can exhibit continues rapid variations in load current magnitude r	results of []
A) Flicker B)Sag C)Swell D)None 33. The portion of CBEMA curve is adapted from	[]
A) IEEE B)IEC C)ICC D)IOC			
34. Ratio between the peak value and RMS value of a periodic waveform A) Coupling B)Crest factor C)Distortion D)Deviation	[]
35. large current that load draws when initially turned on is A)Impulse B)Crest factor C)Coupling D) inrush	[]
36. Power quality isquality A)Voltage quality B)Current quality	[ty]
C)Frequency quality D)All			
37. ITI curve is applicable for A)120Volts B)160Volts C)180 Volts D)100Volts	[]
38. A loss of equipment operation due to noise ,sag or interruption A) Dropout B)Dip C)Distortion D)Fault	[]
39. Fault generally refers to aon the power system A)Open circuit B)Shot circuit	[]
C)A&B D)Flicker			
40. The systematic variations of the voltage envelop is called A) Fluctuations B) Deviations		[]
C)Distortions D)Frequency va	ariations		

<u>UNIT –II</u> <u>Transients, short duration and long duration variations</u>

1	are used to pro	ovide reactive p	ower to correct	the power factor,	which reduce	es losses	s and
suppo	orts the voltage on the s	ystem.				[]
	A).circuit breakers	B).fuses	C) capacitors	D) surge arreste	ers		
2. Ne	ewer high – energy MO	V arresters for l	low voltage ap	plications can with	nstand	[]
	A) 2 to 4 kJ	B) 400kJ	C) 500kJ	D) 600kJ			
3. Th	e initial transient freque	ŕ	,	ŕ	nount of		- on
the fr	ont of the waveform.					[]
	A) hash	B)flash	C)dash	D)crash			
4. Th	e main function of surg	ge arresters and	TVSS is to lim	it the	that ca	n appea	ar
betwe	een two points in the ci	rcuit.				[]
	A) Power	B) voltage	C) current	D) frequency			
5	are r	ormally open d	levices that cor	nduct current durir	ng over volt	age	
transi		ormany open c	ic vices that cor	iduct current durin	ig over voic	[]
	A) 1	1 (7)	1 D)	1		_	_
6 A		ov-bar C)ci				г	1
0. A	an isolation transformer	used to attenua	ile			[]
	A) High frequency			nsients stability			
_	C) Normal current			gh frequency noise			
7	combines t	wo surge suppr	essors and a lo	w pass filter to pro	ove maximum	protect	-
						L]
	A) Normal protector		B).hy	brid protector			
	C) Liquid protector		D) lii	ne projector			
8	c	an reduce the c	apacitor switch	ing transients.		[]
	A) Linear resistors		B) Ca	arbon resistors			
	C) Pre-insertion resis	stors	D) Ti	ransistors			
9. Po	pular strategy for reduc	ing transients o	on capacitor sw	itching is to use a			
						[]
	A) Closing breaker		B) cir	cuit breaker			
	C) Synchronous clos	•		e sectionalizes			
	he transformer would h			=	t of resistive e	equivale	nt
load	to limit Ferro resonance	e over voltages	tope	rcent		[]
	A) 10	B) 20	C) 12	5	D) 225		

11. Utilities generally try to main the	ntain the service v	oltage supplied to	o an end user within	[]
A) +/_ 2 percent of nom C) +/_ 4 percent of noming		B) +/_ 3 Perce D) +/_ 5 Perce			
12. The approach to flicker caus		*			
12. The approach to moner cause	ing round is to upp	ory devices that a	ie commonly curicu	[]
A) Static var compensator	S	B) dynamic co	mpensators		
C) Series capacitors		D) none			
13. Utility line voltage regulator	s and substation L	TCS are relativel	У	[]
A) medium	B)high	C)A&B	D)slow		
14. Electronic tap switching regu	ılators can also be	used to regulate	:	[]
A) current	B)voltage	C)power	D)energy		
15. Magnetic synthesizers althou	, ,	/1		[]
A) swell	B)sags	C)A&B	D)freque	ncv	
16.Motor generator sets are also	, ,	- /	_ / 4	[]
A) voltage sag	B)voltage swell	C)voltage reg	ulation D)compe	nsation	
17. The line drop compensator se	, 0	, ,	, 1	[]
A)R&V	B)V&I	C)P&V	D)R&X		
18.Capacitors may be used for	voltage regulation	on the power sys	stem in	[]
A)Shunt configuration	B)se	eries configuration	on		
C)Shunt or series config	uration D)A	A,B,&C			
19. Series capacitors cannot tole				[]
A)fault current B)faul	t voltage C)faul	It impedance	D)A&B		
20.Capacitor switching is source	of			[]
A)transient B)nois	e C)dis	tortion	D)flicker		
21.Lightning is main source of				[]
A)oscillatory transient		B)impulsive tra	ansient		
B)harmonics 22.clamping are used in ci	rouite	D)all		Г	1
22.Clamping are used in Cl	icuits			[J
A)A B)DC	C)A,]	В	D)none		
23.Impulsive transients are prese	ents in only	directions		[]
A)positive or negative	B)positive	C)negative	D)all		

	QUE	STION BANK	2020
24.Ballast islimiting device in lightr	ning applications]]
A)voltage B)impedan	nce C)current D)none	
25.Capacitor switching is one of the source of A)transient over voltage B)	sag C)interruptions	D)none]
26.High energy transients are first handled by]]
A)low-pass filter B) gap-ty	rpe protector C)both	D)none	
27.power conditioners are similar to]]
A)Low-pass filters C)TVSS	B)isolation T/F D)none		
28. The inductor in the low pass filter bloks the-]]
A)High freq transients	B)low freq transi	ents	
C)both	D)none		
29. Transients is also called as]]
A) Interruption B) Surge	C) Voltage-variation	D) None	
30. Short duration voltage variation is caused by	1]]
A)Loose connection B) Switching	C) Load variation	D) None	
31. The Voltage drops too low under _ load]]
A) Heavy B) Light	C) Both	D) None	
32. Which is example of isolation device]]
a) Ups s/m B) Ferro resonant	t/f C) Motor Generator set	D) All	
33. Which one is more efficient in Voltage regu	lation device]]
A) FerroresonantC) Magnetic synthesizer	B) Electronic tap D) none	switching solu	utions
34. The drawback of motor – generator set is]]
A) Response time is large	B) Losses are hi	gh	
C) both	D) None		
35. In series capacitors, Voltage rise is zero at		[]
A) No load B) full load	C) both	D) None	
PRINCIPLES OF POWER QUALITY			Page 12

			QUESTION BAN	К	2020
36. In shunt capacitor, %	36. In shunt capacitor, % voltage rise is independent of				
A) load	B) supply	C) both	D) None		
37. In series capacitor, t	he S/M losses are	than shut capacitor		[]
A) more	B) less	C) equal	D) none		
38. in cyclic Flicker is a	result of Voltage	e fluctuation		[]
A) Periodic	B) Non periodic	c C) Occasional	D) Non oo	ccasi	ional
39. Zig – Zag transform	ers act like a filter to	the zero sequence currer	nt by offering	[]
A) high impedane	ce path to neutral	B) Low impedance path	to neutral		
C) Any of the ab	ove 1	D) None			
40. Notch filters can pro-	vide to harmonic	suppression		[]
A) power factor		B) voltage			
C) Reactive power	er	D) Active power			

<u>UNIT –III</u> Fundamentals of harmonics and applied harmonics

1	is the average rate of delivery of energy.						
2	A)active power	· · ·				ล	
utility.		B)reactive power]	
3neutral	become ar l.	n important issue for	grounded wye sy	stems with curre	nt flowing o	on the	
	A)fourth harmonics		B) Triple har	rmonics			
4	C)fifth harmonicsis a me orm.	asure of the effective	D) seventh ha		ts of a distor	rted	
	A)fifth harmonic C)total harmonic dist istinctive characteristic current.		B)triplen harn D) seventh have supplies is a v	rmonics	harmonic [content	
6	A) fifthare ind	B)seventh uced currents in a tra	C)third ansformer caused	D) ninth by the magnetic]	
	A)hysteresis losses		B)eddy curre	nt losses			
	C) friction losses monic voltage distortion the mot	n at the motor termir	D)stay losses nals is translated	into	[]	
	A)eddy current losses		B)Harmonic f	luxes			
8. The	C) Power typical range of frequ	encies for induction	D) stay losses furnaces is]]	
9	A) 150 to 1200 kHz is the only step req	· · ·	C)10Hz	D) 3000Hz	[]	
10. A t	A) Rectification C) cyclo converters frequency that is an int	eger multiple of the f	B). inverter D) cyclo inv fundamental freq		[]	
	A) harmonic frequence	y B) switching	C) transient	D)voltage			

			QUESTION BANK	20	20
11. Crest factor for sinusoid	lal wave is			[]
A) 1.123	B) 1.232	C) 1.343	D) 1.414		
12. The Voltage distortion	on transmission systen	n is less than%		[]
A) 5%	B)10%	C) 1%	D) 15%		
13. Voltage distortion dep	ends on the current&			[]
A)Voltage	B)current	C) Frequency	D) Impedance		
14. Most common type of p	assive filter is			[]
A) Single tuned filt	er B) double tuned filte	er C) high pass filte	er D) none		
15. The current drawn by the	he ferroresonant transfe	ormer increases fro	om	[]
A) 0.5-2 A	B) 0.3-1 A	C) 0.2 -2 A	D) 0.4 -2 A		
16. The devices for control	ling harmonic distortio	ons are		[]
A) Line reactor	B) capacitor banks	C) zigzag t/f's	D) All the abov	e	
17 is practically	y effective method for	the PWM type driv	/es	[]
A) zigzag t/f's	B) Line react	tor C) filter	D) none		
18. Some impulse load like	e rock crushers and tire	testers use		[]
A) Shunt capacitors	B) shunt read	ctors C) series	reactors D) serie	s cap	acitors
19. Which of the following	device is a static var co	ompensator		[]
A) TCR	B) TSC	C) SSSC	D) A an	d B	
20. In electronic tap-switch	ning regulators	are used		[]
A) SCR's	B) triacs	C) A or	B D) None	e	
21. Static Var compensator	rs can regulate the volta	age by		[]
A) Supply reactive I	power B) consumes	reactive power C)	a or b D) none		
22. Due to the series capac	itors the voltage rise at	no-load is		[]
A) Minimum	B) zero	C) maxir	num D) none		
23. The percentage voltage	rise at the capacitor is	maximum at		[]
A) full-load	B) light-load	c) no-loa	ad D) all		
PRINCIPLES OF POWER QUA	ALITY				Page 15

				QUESTIC	ON BANK	2020	
24 Cannot provide reac	etive power to the	feeder	load			[]
A) Shunt capacitors	B) shunt react	ors	C) serie	s capacitors	D) None		
25. A typical 3% input choke can	be reducing the h	narmon	ic distorti	on		[]
A) 80-40%	B) 40-20%		C) 10-5	%	D) 50-40	%	
26. The devices for controlling ha	armonic distortion	is are				[]
A) Line reactor	B) capacitor b	anks	C) zigza	ag t/f's	D) All the	e above	;
27. Harmonic control options con	sist of controlling	the har	rmonic in	jection from		[]
A) Linear loads C)Harmonic filters 28. The total demand distortion is	expressed in term	ns of the	D) any	inear loads of the above		[]
A) Average demand C) demand factor 29.The short circuit ratio used to o	letermine the limi	ts on		imum demano zation factor	d	[]
A) Harmonic study 30. The source of harmonic current	B) P C C	C) T	DD	D) harmoni	c currents	[]
A) Low 31. Transformer connections can	B) medium be employed to re	C) gr duce ha		D) transien	its	[]
A) 3 phase systems		B)1]	phase sys	tems			
C)2 phase systems 32. Harmonic problems on distrib	ution feeders often		y of the a	lbove]]
A) Light load 33. Which devices available to co	B)half load ntrol harmonic dis		ull load	D)one for	arth load	[]
A)a capacitor bank 34. The product of RMS voltage a A) Active power 35. Power system freq is directly	B) Reactive po	ed		•	e above D) None	[]
A) Power factor	B) Speed	C) Both		D) None		
36 Power system freq is directly r A) Power factor	elated to B) Speed	C) Both		D) None	[]
37. Notch filters can provide	to harmonic suppr	ression				[]
A) power factor	B) voltage	C) Reactiv	e power			
38. Capacitor voltage filers have	on its output					[]
PRINCIPLES OF POWER QUALITY						Pag	ge 16

A) High pass filte	er	B) band pass filter			
C) low pass filter		D) band reject filte	r		
39. C- Filters are alterna	ative to			[]
A) Low pass bro	ad band filters B) hi	gh pass filters			
C) Low pass filte	ers D) P	ass filters			
40. The ration b/w the R	MS value and the peak v	alue of a pure sinusoid	lal waveform is	[]
A) 0.707	B) 1.11	C) 1.5	D) 1.44		

<u>UNIT -IV</u> <u>Power quality monitoring</u>

1. Power quality monitoring programs are often of	driven by the demand fo	or improving th	ne system [m wide]
A)power quality performance C) current quality performance 2. The methods for characterizing yhe quality of	B) voltage quality pe D)None ac power are important		[]
A)power disturbanceC) monitoring requirements	B) voltage d D) rms variations	isturbance		
3. Infracted meters can be very valuable in detec	cting loose connection a	nd	[]
A)insulators	B)semiconductors			
C)overheating conductors 4. Electrostatic discharge(E S D)can be an import	D) A&B tant cause of power qua	ılity problems i	n some	type of
A)Electrical equipment C) Electrical &Electronic equipment 5. The rms value of a signal is a measure of the heacross a	B)Electronic equiparts D)none eating that will result if		mpresse [ed]
A)Inductive load B)capacitive load 6.Instruments in the disturbance analyser categor	C) resistive load ry have very limited	D)none	[]
A)Harmonic study C) Harmonic analysis capabilities 7.A simple portable meter for harmonic analysis	B) Harmonic inject D)any of the above is		[]
A)practical B)ideal 8.Historically flicker has been measured using rm	C)A&B as meters, load duty cyc	D)medium ele, and a	[]
A)Flicker curve B) T H D	C)Load duty cycle	D)Measuring	g flicke	r
9.Monitoring of power quality on power systems	often requires transduc	ers to obtain ac	cceptabl	e]
A)V & I signal levels C)E & I signal levels 10.Frequency response is particularly important for	B)V & P signal level D)A&B or transient and harmon		[]
A)Distortion monitoring B)Signal levels	C) FTP	D)UCAMMS	S	

		project defined sever	al performance indice	s for evaluating t	he elect	ric
servi	ice quality.				[]
	A)EPRI RBM	B) RVM	C).RGM		RRM	
12.		involves t				
	System.	stem and characterization	on of the performance	of the	[]
13	A) Collect RVM C)Collect power of		B) Collect RBX of D) collect RRM ast performance, a sta	data		
В	y similar utilities, or	a standard established l	by a professional.		[]
	A)select EPRI RE C)Select RVM	BM	B) select the bend D) RRM	chmark		
		9-1995 defines a sustain an percent of nomi	-		[]
	A) 20	B) 30	C) 40	D) 10		
	Are compensation.	is the maximum sum of	sag score values allov	vable for a group	of locat	tions
	A) sag score targe C) sag wind targe A is the est qualifying.		B) interruptions D) none of the age lost by each of the	above	tages for	r the
	is base	d on the mean value of		D) dip ice tage THD measu	rements	
reco	rded for each circuit	segment rather than the	e CP95 value.		[]
	A) SATDD	B)SATHD	C)SATSS	D) voltage		
18. 7	Γhe	are designed	to assess the service of	quality for a spec	ified cire	cuit area]
	A) rms variation C) Average volt	age indices	B)maximum vo D) voltage sag	_		
19	to ser	rve as metrics for quanti	ifying quality of service	ce.	[]
	A) EPRI RBM	B) RVM	C)RGM	D)ROG		
	STHD95 represent the State of values of voltage -	he CP95 value of a weig	ghted distribution of th	e individual circ	uit segm [ent]
	A) SDD	B)TDD	C) THD	D)TDDs		

		QUESTION BANK	2020
21.Digital monitoring instruments incorporate the	use of	[]
A)A to D B)D to A C)Bo 22.The frequency response of a standard metering	· · · · · · · · · · · · · · · · · · ·	None ls on the []
A)Voltage B)Current C)Ty 23.Some substations use capacitively coupled vol	=	• •]
A)Voltage regulation C)Frequency	B)Voltag D)All	e transdusers	
24.Standard metering class C Ts are generally ad-	equate for frequenci	es up to []
A)5KHz B)3KHz C)2k 25.Usually existing substation C Ts and V T s can	XHz D) be used for]
A)PQ maintenance C)PQ Consideration 26.For monitoring primary sites involve monitoring	B)PQ Monitoring D)None ng at the sending of a]
A)distribution transformer C)Fault recorders 27.There are two streams of power quality data an	B)Multimeters D)All alysis	[]
A)Offline B)Line analysis C)Bo 28. The new standard format for interchanging po))None []
A)PQ DIF B)PQ DEF C)PQ 29.Transient analysis which includes statistical an		D)PQ voltage ,transient dura	tion and
		[]
A)Transiant B)Transient frequency 30. RMS variations is structure into Levels	C)Power	D)Current]
A) one B) Two	C) Three	D) Five	
31% of RMS variator are no rectangular]]
A) 20 B) 10	C) 30	D) 60	
32. RMS variations is structure into Levels]]
A) one B) Two	C) Three	D) Five	
33. SAR $Fl_x =$]]
a) $\Sigma N_i/N_t$ B) $\Sigma N_i-1/N_t$	c) $\Sigma N_i + 1/N_t$	D) $\Sigma N_i + 1/N_{t-1}$	
34. SARFI is us to define]]
A) Threshold as a curve	B)	threshold as a valve	

C) Both A and B			D) None			
35. IEEE	E - 519 is the star	ndard for				[]
\mathbf{A}) Voltage harmo	onies B) (Current harmonies	C) spikes	D) sags		
36. Volta	age magnitude ar	nd transient mag	gnitude can be mea	asures by]]
\mathbf{A}) Spectrum Anal	yze		B) Harmonio	: Analyze		
C) Disturbance Ar	nalyze		D) R	MS meter		
37. Deter	mine target perfo	ormance levels a	are targets that are	appropriate a	nne economica	ally and -]
A)	Feasible	B)Unfeasible C)Considerable	D)None			
	=		ximatelying system fall be	_	=	ags meas	sured by
\mathbf{A})20,0.75PU	B)10,0.7PU	C)25,0.6PU	D)15,	0.9PU		
39. An in	surance scheme	is considered	if the expected	d cost of clain	ns equals		
the premi	ums paid.					[]
\mathbf{A}) fair	B) unfair	C)feasible	D)no	ne		
	AS variations agrae control of the		enance efforts to	1	he number of	faults for	events
\mathbf{A})Increase	B)Reduce	C)Cor	ıstant	D)All		

<u>UNIT -V</u> Power quality enhancement using custom power devices

1.The concept of custom power was introduced]
A) N. G. Hingo	rani B) D	avid.N	C) Nelson.F	D) No	one	
2. A unified power quali	ty conditioner (U	PQC) is a com	bination of]]
A) series	B) shunt	C) series and	shunt	D) None		
3. The network reconfigured A) series switchs		•	d ries and shunt sw	itchgear I	[D)None]
4. The energy exchange through					[]
A) Inductor	B)Resistor	C) de caj	pacitor	D)None		
5. The compensating cus	tom power device	es are used for			[]
A) active filtering	ng B) load b	alancing	C) power factor	rimprovement	D)All	
6. Which of the following	g are compensatin	g custom pow	er devices		[]
A) UPQC	B) Solid State	Breaker	C) Static Cur	rent Limiter D)	None	
7. Which of the following	g are Network rec	onfiguring typ	e custom power	devices	[]
A) UPQC	B) Solid State E	Breaker	C) DVR D)No	ne		
8. Network reconfiguring inserting series induct	ance			-]
A) UPQC	B) Solid State 1		,	atic Current Li		
9. Which of the following	g is a high- speed	switching dev	ice		[]
A) GTO	B) MOSFET	C)BJT D) Static Current	Limiter		
10. Which of the following	ng is a high-speed	switching pov	wer electronic co	ntrolling devic	e []
A) UPQC	B) Solid State 1	Breaker	C) DVR D) S	atic Current Li	imiter	
11. Dynamic Voltage Re	estorer is also call	ed as			[]
A) series-shunt of	compensator B)	shunt compens	sator C) static se	ries compensat	tor D)No	one
12.Which of the following	ng devices is calle	ed as series vol	tage booster		[]
A) UPQC	B) Solid State T	Transfer Switch	n C) DVF	D) i	None	
13. The number of GTO A) rated peak poor	_		rrent Limiter ge C) rated peal	c current D)	[None]

14. When a deep voltage sag or interruption is detected in this feeder, the load is quickly		
transferred to the alternate feeder. This switching action is called	[]
A) make-before-break B) make-after-break C) make-small-break D) No	ne	
15. The primary objective of a transfer switch is to protect a sensitive load from	[]
A) voltage sag/swell B) voltage interruption C) power interruption D) N	lone	
16. Which of the following are not compensating custom power devices	[]
A) UPQC B) Solid State Breaker C) DVR D)None		
17. Which of the following are not Network reconfiguring type custom power devices	[]
A) UPQC B) Solid State Breaker C) Static Current Limiter D)N	one	
18. A solid state breaker can offer the following advantages	[]
A) limited fault current B) reduced switching surges C) power quality D)	None	
19. The most efficient and modern custom power device used in power distribution		
Networks	[]
A) UPQC B) Solid State Breaker C) DVR D)None		
20. DVR is a series connected custom power device, designed to inject a dynamically	[]
controlled		
A) voltage B) current C)power D)None		
21. DVR consists of an energy storage device, a boost converter (dc to dc), voltage source	e[]
inverter, ac filter and coupling transformer, connected in		
A) parallel B) series C)series-parallel D)None		
22.DVR is a connected device	[]
A) shunt B) series C) combined series and shunt none D) none 23. Which of the following controller injects voltage in series with the line	Г]
	L	J
A) Series B) Shunt C) Series-Shunt D)None		
24. Which of the following controller injects current in to the system	[]
A) Series B) Series-Series C) Series-Shunt D) Shunt		
25. Which of the following controller provides more effective voltage control	[]
A) Series B) Shunt C) Series-Series D)None		
26. Which of the following device used for high power applications	[]
A) GTO B) Diode C) Thyristor D)BJT		
27. Which of the following controller more effective in current/power flow	[]

28. Which of the following an	e sag mitigation devices		[]
A)DVR B)SST	S C) Active series	compensators I	O)All of the above	
29.SSCL consists of a pair of	opposite poled switches	in parallel with the cu	rrent limiting []
A) Inductor Lm	B) Capacitor Cm C	C)Capacitor Cs I	O)none	
30. The current limiter is conn	ectedwith the feed	er such that it can rest	rict the current in ca	ase of
fault down stream			[]
A) shunt B) seri	es C) combined	D) none		
31.In SSCL during healthy st	ate condition the opposit	e poled switch remain	s— []
A)opened B) clos	sed C) constant	D)none		
32. The SSTS is also called a	S		[]
A)STS B)TCF	C) TSR	D) none		
33.The worlds first DVR wa	s installed in the year		[]
A)1995 B) 199	0 C) 2001	D) 2005		
34. The UPQC connected in -	different ways		[]
A) 2 B)3	C) 4	D)5		
35. Which company installed	an indoor 15kv, 600A sta	atic transfer switch at i	ndustrial	
park in Columbus			[]
A) American electric	power B) Ediso	n company		
C) texas company	D)none			
36. UPQC is a combination	of		[]
A) SSSC,STATCOM	B) TCR,	TSR		
B)TCSC,TSSS	D) TCS0	C,SSSC		
37. STATCOM generates/abso	rbs the		[]
1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) 0 (D) D) N		
A)Real power B) Re	acive powe C) Both (A	A)&(B) D)None		
38. Which of the following devi	ce is more preferable for F	ACTS technology	[1
_	•			-
A)CSC B)V	SC C)Both	n(A)&(B)	D)None	
39. Which of the following dev	ice is more preferable for s	torage in FACTS techno	ology []
A) Capacitors B)In	ductors C)Batte	eries D)Super cond	ucting magnets	
40. The effective transmission is	mpedance X_{eff} with the seri	es capacitive compensat	ion []
A) $X-Xc$ B) $X+X$	Kc (C) X/Xc	O) None	

Prepared by:S.MUNISEKHAR